def build_and_train_lstm_model(X_train, y_train, X_validate, y_validate,
num_layers=4, units=100, dropout_rate=0.2,
epochs=200, batch_size=64,
model_name="lstm_google_price_predict_model.keras"):
"""
Builds and trains an LSTM model for time series prediction.
Parameters:
- X_train, y_train: Training data
- X_validate, y_validate: Validation data
- num_layers: Number of LSTM layers
- units: Number of LSTM units per layer
- dropout_rate: Dropout rate for regularization
- epochs: Training epochs
- batch_size: Batch size
- model_name: Name of the model file (stored in _local_config.models_dir)
Returns:
- history: Training history object
"""
global _local_config
if _local_config is None:
raise RuntimeError("Config not loaded yet! Call load_google first.")
# Try to get model_location from _local_config if available
if hasattr(_local_config, 'models_dir'):
print(f"Model will be saved to ${_local_config.models_dir}")
else:
raise ValueError("Model location not provided and not found in configg (_local_config)")
# Ensure the model directory exists
model_dir = Path(_local_config.models_dir)
model_dir.mkdir(parents=True, exist_ok=True)
model_path = model_dir / model_name
# Initialize model
regressor = Sequential()
regressor.add(Input(shape=(X_train.shape[1], X_train.shape[2])))
# Add LSTM + Dropout layers
for i in range(num_layers):
return_seq = i < (num_layers - 1)
regressor.add(LSTM(units=units, return_sequences=return_seq))
regressor.add(Dropout(rate=dropout_rate))
# Add output layer
regressor.add(Dense(units=1))
# Compile model
regressor.compile(optimizer="adam", loss="mean_squared_error")
# Create checkpoint
checkpoint_callback = ModelCheckpoint(
filepath=str(model_path),
monitor="val_loss",
save_best_only=True,
mode="min",
verbose=0
)
# Train the model
history = regressor.fit(
x=X_train,
y=y_train,
validation_data=(X_validate, y_validate),
epochs=epochs,
batch_size=batch_size,
callbacks=[checkpoint_callback]
)
return history
When I ran my training and then plot the loss function from my training and validation dataset, here is what I see:
I do not understand 2 things:
Как может быть, что потеря тренировок довольно последовательна?>
Я обучаю модель LSTM для прогнозирования цены акций. Это то, что я делаю с моим модельным обучением: < /p> [code]def build_and_train_lstm_model(X_train, y_train, X_validate, y_validate, num_layers=4, units=100, dropout_rate=0.2, epochs=200, batch_size=64, model_name="lstm_google_price_predict_model.keras"):
""" Builds and trains an LSTM model for time series prediction. Parameters: - X_train, y_train: Training data - X_validate, y_validate: Validation data - num_layers: Number of LSTM layers - units: Number of LSTM units per layer - dropout_rate: Dropout rate for regularization - epochs: Training epochs - batch_size: Batch size - model_name: Name of the model file (stored in _local_config.models_dir) Returns: - history: Training history object """
global _local_config if _local_config is None: raise RuntimeError("Config not loaded yet! Call load_google first.")
# Try to get model_location from _local_config if available if hasattr(_local_config, 'models_dir'): print(f"Model will be saved to ${_local_config.models_dir}") else: raise ValueError("Model location not provided and not found in configg (_local_config)")
# Ensure the model directory exists model_dir = Path(_local_config.models_dir) model_dir.mkdir(parents=True, exist_ok=True) model_path = model_dir / model_name
# Initialize model regressor = Sequential() regressor.add(Input(shape=(X_train.shape[1], X_train.shape[2])))
# Add LSTM + Dropout layers for i in range(num_layers): return_seq = i < (num_layers - 1) regressor.add(LSTM(units=units, return_sequences=return_seq)) regressor.add(Dropout(rate=dropout_rate))
# Add output layer regressor.add(Dense(units=1))
# Compile model regressor.compile(optimizer="adam", loss="mean_squared_error")
# Train the model history = regressor.fit( x=X_train, y=y_train, validation_data=(X_validate, y_validate), epochs=epochs, batch_size=batch_size, callbacks=[checkpoint_callback] )
return history [/code] When I ran my training and then plot the loss function from my training and validation dataset, here is what I see: [img]https://i.sstatic.net/XWby971c.png[/img]
I do not understand 2 things:
Как может быть, что потеря тренировок довольно последовательна?>
Моя нейронная сеть
def buildModel(optimizer):
model = tf.keras.models.Sequential( )
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics= )
return model
Я обучаю свою сиамскую сеть работе с NLP. Я использовал здесь lstm. и до н.э.Потеря. Моя потеря увеличивается с первой эпохи. Первые 36 эпох потеря
error after 0 is
272.4357
Я разрабатываю с нуля, моя первая полностью подключенная Ann на основе режима пакетного обучения на тренировочном наборе игрушек. Я использую обратное распространение для расчета градиента функции потерь по отношению к весам и смещениям и использую...
У меня есть модель, и я хочу обучить ее со скоростью обучения = 0,8 в течение нескольких эпох, затем установить скорость обучения = 0,4 и продолжить обучение.
Но поскольку скорость обучения задается при компиляции модели... И что произойдет ли с...