Использование Scikit-learn для классификации бинарной проблемы. Получение идеальной классификации_репорта (все 1's). И все же прогноз дает 0,36 . Как это может быть? Тем не менее, я не думаю, что это так, так как F1 < /code> и другие столбцы оценки, а также матрица путаницы, указывают на идеальную оценку. < /P>
# Set aside the last 19 rows for prediction.
X1, X_Pred, y1, y_Pred = train_test_split(X, y, test_size= 19,
shuffle = False, random_state=None)
X_train, X_test, y_train, y_test = train_test_split(X1, y1,
test_size= 0.4, stratify = y1, random_state=11)
clcv = DecisionTreeClassifier()
scorecv = cross_val_score(clcv, X1, y1, cv=StratifiedKFold(n_splits=4),
scoring= 'f1') # to balance precision/recall
clcv.fit(X1, y1)
y_predict = clcv.predict(X1)
cm = confusion_matrix(y1, y_predict)
cm_df = pd.DataFrame(cm, index = ['0','1'], columns = ['0','1'] )
print(cm_df)
print(classification_report( y1, y_predict ))
print('Prediction score:', clcv.score(X_Pred, y_Pred)) # unseen data
< /code>
output: < /p>
confusion:
0 1
0 3011 0
1 0 44
precision recall f1-score support
False 1.00 1.00 1.00 3011
True 1.00 1.00 1.00 44
micro avg 1.00 1.00 1.00 3055
macro avg 1.00 1.00 1.00 3055
weighted avg 1.00 1.00 1.00 3055
Prediction score: 0.36
Подробнее здесь: https://stackoverflow.com/questions/532 ... prediction
Идеальная точность, отзыв и F1-показатель, но плохой прогноз ⇐ Python
-
- Похожие темы
- Ответы
- Просмотры
- Последнее сообщение
-
-
Рассчитайте точность, полноту, точность и сбалансированную точность из матрицы путаницы.
Anonymous » » в форуме Python - 0 Ответы
- 38 Просмотры
-
Последнее сообщение Anonymous
-