(с pytorch).
Код: Выделить всё
from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification
from scipy.special import softmax
import nltk
from nltk.tokenize import word_tokenize
nltk.download('punkt')
example = "Dude, that's amazing!"
tokens = word_tokenize(example, preserve_line=True)
MODEL = "cardiffnlp/twitter-roberta-base-offensive"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
def evaluate_text(text):
encoded_text = tokenizer(text, return_tensors='pt')
output = model(**encoded_text)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
neg_value = float(scores[1])
pos_value = float(scores[0])
print("Negative value:", neg_value)
print("Positive value:", pos_value)
evaluate_text(example)
Подробнее здесь: https://stackoverflow.com/questions/796 ... with-rober