Код: Выделить всё
AttributeError Traceback (most recent call last)
in ()
3 small_train_dataset = train_dataset.unbatch().take(train_sample_size).batch(batch_size)
4
----> 5 bnn_model_small = create_bnn_model(train_sample_size)
6 run_experiment(bnn_model_small, mse_loss, small_train_dataset, test_dataset)
2 frames
/usr/local/lib/python3.10/dist-packages/tf_keras/src/engine/input_spec.py in assert_input_compatibility(input_spec, inputs, layer_name)
249 )
250 if spec.min_ndim is not None:
--> 251 ndim = x.shape.rank
252 if ndim is not None and ndim < spec.min_ndim:
253 raise ValueError(
AttributeError: 'tuple' object has no attribute 'rank'
Определение модели
Код: Выделить всё
def create_bnn_model(train_size):
inputs = create_model_inputs()
features = keras.layers.concatenate(list(inputs.values()))
features = layers.BatchNormalization()(features)
# Create hidden layers with weight uncertainty using the DenseVariational layer.
for units in hidden_units:
features = tfp.layers.DenseVariational(
units=units,
make_prior_fn=prior,
make_posterior_fn=posterior,
kl_weight=1 / train_size,
activation="sigmoid",
)(features)
# The output is deterministic: a single point estimate.
outputs = layers.Dense(units=1)(features)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
< /code>
Код для начала обучения является следующим:
начало обучения < /strong> < /p>
num_epochs = 500
train_sample_size = int(train_size * 0.3)
small_train_dataset = train_dataset.unbatch().take(train_sample_size).batch(batch_size)
bnn_model_small = create_bnn_model(train_sample_size)
run_experiment(bnn_model_small, mse_loss, small_train_dataset, test_dataset)
Подробнее здесь: https://stackoverflow.com/questions/789 ... works-lead