import openai
import textwrap
client = openai.OpenAI(
api_key="sk-xxxxxxxx",
base_url="https://chatapi.akash.network/api/v1"
)
response = client.chat.completions.create(
model="Meta-Llama-3-1-8B-Instruct-FP8",
messages = [
{
"role": "user",
"content": "Who are you?"
}
],
)
print(textwrap.fill(response.choices[0].message.content, 50))
< /code>
Если я настраиваю учебное пособие по стартеру lmaindex, например: < /p>
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.llms.openai import OpenAI
API_BASE_URL="https://chatapi.akash.network/api/v1"
EMBEDDING_MODEL="BAAI/bge-small-en-v1.5"
LLM_MODEL="Meta-Llama-3-3-70B-Instruct"
# Load your documents
documents = SimpleDirectoryReader("data").load_data()
# Pick an available OpenAI compatible model
custom_llm = OpenAI(api_base=API_BASE_URL, model=LLM_MODEL)
# Initialize the HuggingFace embedding model
embedding_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL)
# Set the local embedding model
Settings.embed_model = embedding_model
# Build the index using the local embeddings
index = VectorStoreIndex.from_documents(documents, llm=custom_llm)
query_engine = index.as_query_engine(llm=custom_llm)
response = query_engine.query("What did the author do growing up?")
print(response)
< /code>
Я получаю эту ошибку от клиента Lib:
», пожалуйста, предоставьте действительное имя модели Openai в: [b] O1, O1-2024-12-17, O1-Preview , O1-Preview-2024-09-12, O1-Mini, [/b] (...) "
File "C:\Dev\projects\llama-index-starter-tuto\.venv\Lib\site-packages\llama_index\llms\openai\utils.py", line 236, in openai_modelname_to_contextsize
raise ValueError(
ValueError: Unknown model 'Meta-Llama-3-3-70B-Instruct'. Please provide a valid OpenAI model name in: o1, o1-2024-12-17, o1-preview, o1-preview-2024-09-12, o1-mini, (...)
Если я удалю параметр «llm» из «as_query_engine» и установит openai_api_base = https: //chatapi.akash.network/api/v1 env Переменная, я получаю это от API :
«Не разрешено назвать модель = gpt-3.5-turbo. разрешение команды модели = [ 'llama3-8b', 'Meta-Llama-3-1-405b-instruct-fp8', 'llama3 -8b-instruct ',' Meta-Llama-3-1-8b-instruct-fp8 ', (...) "
openai.AuthenticationError: Error code: 401 - {'error': {'message': "Authentication Error, Team=643a4183-7eb9-4c20-8e31-db45843bffbe not allowed to call model=gpt-3.5-turbo. Allowed team models = ['llama3-8b', 'Meta-Llama-3-1-405B-Instruct-FP8', 'llama3-8b-instruct', 'Meta-Llama-3-1-8B-Instruct-FP8', 'Meta-Llama-3-2-3B-Instruct', 'nvidia-Llama-3-1-Nemotron-70B-Instruct-HF', 'Meta-Llama-3-3-70B-Instruct', (...)]", 'type': 'auth_error', 'param': 'None', 'code': '401'}}
< /code>
Значит ли это, что нет способа использовать llama_index.llms.openai для достижения конечной точки Akash? Клиент LIB ожидает набора моделей и API ожидает другого набора? < /p>
from llama_index.llms.llama_api import LlamaAPI
#(...)
#custom_llm = OpenAI(api_base=API_BASE_URL, model=LLM_MODEL)
custom_llm = LlamaAPI(api_key=LLAMA_API_KEY)
Предполагается, что API AKASH Chat должен быть совместим с OpenAI: https://chatapi.akash.network/documentation, он совместим с основным Openai SDK: [code]import openai import textwrap client = openai.OpenAI( api_key="sk-xxxxxxxx", base_url="https://chatapi.akash.network/api/v1" )
print(textwrap.fill(response.choices[0].message.content, 50)) < /code> Если я настраиваю учебное пособие по стартеру lmaindex, например: < /p> from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings from llama_index.llms.openai import OpenAI
# Load your documents documents = SimpleDirectoryReader("data").load_data()
# Pick an available OpenAI compatible model custom_llm = OpenAI(api_base=API_BASE_URL, model=LLM_MODEL)
# Initialize the HuggingFace embedding model embedding_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL)
# Set the local embedding model Settings.embed_model = embedding_model
# Build the index using the local embeddings index = VectorStoreIndex.from_documents(documents, llm=custom_llm)
query_engine = index.as_query_engine(llm=custom_llm) response = query_engine.query("What did the author do growing up?") print(response)
< /code> Я получаю эту ошибку от клиента Lib: », пожалуйста, предоставьте действительное имя модели Openai в: [b] O1, O1-2024-12-17, O1-Preview , O1-Preview-2024-09-12, O1-Mini, [/b] (...) " File "C:\Dev\projects\llama-index-starter-tuto\.venv\Lib\site-packages\llama_index\llms\openai\utils.py", line 236, in openai_modelname_to_contextsize raise ValueError( ValueError: Unknown model 'Meta-Llama-3-3-70B-Instruct'. Please provide a valid OpenAI model name in: o1, o1-2024-12-17, o1-preview, o1-preview-2024-09-12, o1-mini, (...) [/code] Если я удалю параметр «llm» из «as_query_engine» и установит openai_api_base = https: //chatapi.akash.network/api/v1 env Переменная, я получаю это от API : «Не разрешено назвать модель = gpt-3.5-turbo. разрешение команды модели = [[b] 'llama3-8b', 'Meta-Llama-3-1-405b-instruct-fp8', 'llama3 -8b-instruct ',' Meta-Llama-3-1-8b-instruct-fp8 '[/b], (...) " [code]openai.AuthenticationError: Error code: 401 - {'error': {'message': "Authentication Error, Team=643a4183-7eb9-4c20-8e31-db45843bffbe not allowed to call model=gpt-3.5-turbo. Allowed team models = ['llama3-8b', 'Meta-Llama-3-1-405B-Instruct-FP8', 'llama3-8b-instruct', 'Meta-Llama-3-1-8B-Instruct-FP8', 'Meta-Llama-3-2-3B-Instruct', 'nvidia-Llama-3-1-Nemotron-70B-Instruct-HF', 'Meta-Llama-3-3-70B-Instruct', (...)]", 'type': 'auth_error', 'param': 'None', 'code': '401'}} < /code> Значит ли это, что нет способа использовать llama_index.llms.openai для достижения конечной точки Akash? Клиент LIB ожидает набора моделей и API ожидает другого набора? < /p> from llama_index.llms.llama_api import LlamaAPI #(...) #custom_llm = OpenAI(api_base=API_BASE_URL, model=LLM_MODEL) custom_llm = LlamaAPI(api_key=LLAMA_API_KEY) [/code] Но нет возможности настроить базовый URL API.
API чата Akash должен быть совместим с openai: он совместим с базовым OpenAI SDK:
import openai
import textwrap
client = openai.OpenAI(
api_key= sk-xxxxxxxx ,
base_url=
)
Предполагается, что API AKASH Chat должен быть совместим с OpenAI: он совместим с основным Openai SDK:
import openai
import textwrap
client = openai.OpenAI(
api_key= sk-xxxxxxxx ,
base_url=
)
Чтобы научиться использовать библиотеку Microsoft.AspNetCore.Authentication.OpenIdConnect net7.0 на своем рабочем месте, я просматриваю онлайн-руководство ( Learn/dotnet-openid-connect-website/).
Моя первая попытка экспериментировать с машинным обучением. Я пытаюсь начать с простого: ML сообщит мне, какая сумма была возвращена в трех разных контекстах.
Я выбрал «Сценарий» — «Ответ на вопрос».
Я пробую руководство по Django 1.9 с ОС Win 10 и Python 3.5, версия Django — 1.9. Я успешно создал и сохранил значения в разделах «Вопрос» и «Выбор». После этого, когда я изменил polls/model.py с помощью __str__() согласно учебнику django, учебник...