Как настроить llama-cpp-python для использования большего количества виртуальных ЦП для запуска LLMPython

Программы на Python
Ответить Пред. темаСлед. тема
Anonymous
 Как настроить llama-cpp-python для использования большего количества виртуальных ЦП для запуска LLM

Сообщение Anonymous »

Я использую llama-cpp-python для запуска Mistral-7B-Instruct-v0.3-GGUF на виртуальной машине Azure.
Я протестировал модель Mistral-7B -Instruct-v0.3.Q4_K_M.gguf и Mistral-7B-Instruct-v0.3.fp16.gguf в виртуальной машине с 32 виртуальными ЦП. Все модели ответили через 6–7 минут на запрос 15 000 токенов.
После этого я масштабирую виртуальную машину так, чтобы она имела 64 виртуальных ЦП, с теоретически наивным намерением улучшить время отклика модели. Я стремлюсь к тому, чтобы время ответа составляло 1–2 минуты.
Однако время ответа после увеличения количества виртуальных ЦП осталось прежним.
Ниже это мой тестовый скрипт Python:

Код: Выделить всё

from llama_cpp import Llama
import json

def test(model_path, n_threads_batch):
llm = Llama(model_path=model_path, n_ctx=32768, n_threads=64, n_threads_batch=n_threads_batch, offload_kqv=False)
with open("./message_sample.txt", "r", encoding="utf-8") as f:
messages = json.load(f)
resp = llm.create_chat_completion(messages=messages, temperature=0.0)
return resp
Ниже приведены метаданные модели, считанные llama-cpp-python:

Код: Выделить всё

llama_model_loader: loaded meta data with 25 key-value pairs and 291 tensors from ./models/Mistral-7B-Instruct-v0.3.fp16.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values.  Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = models--mistralai--Mistral-7B-Instruc...
llama_model_loader: - kv   2:                          llama.block_count u32              = 32
llama_model_loader: - kv   3:                       llama.context_length u32              = 32768
llama_model_loader: - kv   4:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv   6:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   7:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv   8:                       llama.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 1
llama_model_loader: - kv  11:                           llama.vocab_size u32              = 32768
llama_model_loader: - kv  12:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  13:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  14:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  15:                      tokenizer.ggml.tokens arr[str,32768]   = ["", "", "", "[INST]", "[...
llama_model_loader: - kv  16:                      tokenizer.ggml.scores arr[f32,32768]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  17:                  tokenizer.ggml.token_type arr[i32,32768]   = [2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv  18:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  19:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  20:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  21:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  22:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  23:                    tokenizer.chat_template str              = {{ bos_token }}{% for message in mess...
llama_model_loader: - kv  24:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type  f16:  226 tensors
llm_load_vocab: special tokens cache size = 1027
llm_load_vocab: token to piece cache size = 0.1731 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32768
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 7B
llm_load_print_meta:  model ftype      = F16
llm_load_print_meta: model params     = 7.25 B
llm_load_print_meta: model size       = 13.50 GiB (16.00 BPW)
llm_load_print_meta: general.name     = models--mistralai--Mistral-7B-Instruct-v0.3
llm_load_print_meta: BOS token        = 1 ''
llm_load_print_meta: EOS token        = 2 ''
llm_load_print_meta: UNK token        = 0 ''
llm_load_print_meta: LF token         = 781 ''
llm_load_print_meta: max token length = 48
llm_load_tensors: ggml ctx size =    0.14 MiB
llm_load_tensors:        CPU buffer size = 13825.02 MiB
...................................................................................................
llama_new_context_with_model: n_ctx      = 32768
llama_new_context_with_model: n_batch    = 512
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:        CPU KV buffer size =  4096.00 MiB
llama_new_context_with_model: KV self size  = 4096.00 MiB, K (f16): 2048.00 MiB, V (f16): 2048.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.13 MiB
llama_new_context_with_model:        CPU compute buffer size =  2144.01 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 1
AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD =
0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 0 |
Model metadata: {'tokenizer.chat_template': "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation r
oles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assis
tant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", 'tokenizer.ggml.add_eos_token': 'fals
e', 'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.eos_token_id': '2', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'llama', 'general.architecture': 'llama', 'l
lama.rope.freq_base': '1000000.000000', 'tokenizer.ggml.pre': 'default', 'llama.context_length': '32768', 'general.name': 'models--mistralai--Mistral-7B-Instruct-v0.3', 'tokenizer.ggml.
add_bos_token': 'true', 'llama.embedding_length': '4096', 'llama.feed_forward_length': '14336', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'tokenizer.ggml.bos_token_id': '1',
'llama.attention.head_count': '32', 'llama.block_count': '32', 'llama.attention.head_count_kv': '8', 'general.file_type': '1', 'llama.vocab_size': '32768', 'llama.rope.dimension_count'
: '128'}
Available chat formats from metadata: chat_template.default
Guessed chat format: mistral-instruct

llama_print_timings:        load time =    4449.01 ms
llama_print_timings:      sample time =      59.17 ms /   332 runs   (    0.18 ms per token,  5610.57 tokens per second)
llama_print_timings: prompt eval time =  363534.49 ms / 18814 tokens (   19.32 ms per token,    51.75 tokens per second)
llama_print_timings:        eval time =   66030.23 ms /   331 runs   (  199.49 ms per token,     5.01 tokens per second)
llama_print_timings:       total time =  430140.04 ms / 19145 tokens
Я не понимаю, почему время отклика LLM не улучшилось даже после увеличения количества виртуальных ЦП; не могли бы вы предложить несколько подходов для этого?

Подробнее здесь: https://stackoverflow.com/questions/787 ... unning-llm
Реклама
Ответить Пред. темаСлед. тема

Быстрый ответ

Изменение регистра текста: 
Смайлики
:) :( :oops: :roll: :wink: :muza: :clever: :sorry: :angel: :read: *x)
Ещё смайлики…
   
К этому ответу прикреплено по крайней мере одно вложение.

Если вы не хотите добавлять вложения, оставьте поля пустыми.

Максимально разрешённый размер вложения: 15 МБ.

  • Похожие темы
    Ответы
    Просмотры
    Последнее сообщение

Вернуться в «Python»