Код: Выделить всё
def normal(x, mu, sigma):
"""
Gaussian (normal) probability density function.
Args:
x (np.ndarray): Data points.
mu (float): Mean of the distribution.
sigma (float): Standard deviation of the distribution.
Returns:
np.ndarray: Probability density values.
"""
return (1 / (np.sqrt(2 * np.pi) * sigma)) * np.exp(-0.5 * ((x - mu) / sigma) ** 2)
def model(x, a, mu1, s1, mu2, s2):
return a*normal(x, mu1, s1) + (1-a)*normal(x, mu2, s2)
Теперь я хотел динамически генерировать такую функцию для любого количества пиков.
Код: Выделить всё
def generate_gaussian_mix(n):
def gaussian_mix(x, *params):
if len(params) != 3 * n - 1:
print(params)
raise ValueError(f"Expected {3 * n - 1} parameters, but got {len(params)}.")
params = np.asarray(params)
mu = params[0::3] # Means
sigma = params[1::3] # Standard deviations
a = params[2::3] # Weights
a = np.hstack((a, 1 - np.sum(a)))
return np.sum((a / (np.sqrt(2 * np.pi) * sigma))*np.exp(-0.5 * ((x - mu) / sigma) ** 2))
return np.vectorize(gaussian_mix)
для полноты картины это функция оптимизации:
Код: Выделить всё
def neg_log_event_likelyhood(model, event, theta):
x = -np.log(model(event, *theta))
return x
def fit_distribution_anneal(model, events, bounds, data_range = None, **kwargs):
def total_log_likelyhood(theta, model, events):
return np.sum(neg_log_event_likelyhood(model, events, theta))
if data_range is not None:
events = np.copy(events)
events = events[np.logical_and(events > data_range[0], events < data_range[1])]
result = dual_annealing(total_log_likelyhood, bounds, args=(model, events), **kwargs)
params = result.x
return params
Подробнее здесь: https://stackoverflow.com/questions/792 ... formance-i