Py4JJavaError Traceback (most recent call last)
Cell In[7], line 1
----> 1 rdd.map(lambda x : x[0]).collect()
File C:\PySpark\Spark\spark-3.5.3-bin-hadoop3\python\pyspark\rdd.py:1833, in RDD.collect(self)
1831 with SCCallSiteSync(self.context):
1832 assert self.ctx._jvm is not None
-> 1833 sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
1834 return list(_load_from_socket(sock_info, self._jrdd_deserializer))
File C:\PySpark\Spark\spark-3.5.3-bin-hadoop3\python\lib\py4j-0.10.9.7-src.zip\py4j\java_gateway.py:1322, in JavaMember.__call__(self, *args)
1316 command = proto.CALL_COMMAND_NAME +\
1317 self.command_header +\
1318 args_command +\
1319 proto.END_COMMAND_PART
1321 answer = self.gateway_client.send_command(command)
-> 1322 return_value = get_return_value(
1323 answer, self.gateway_client, self.target_id, self.name)
1325 for temp_arg in temp_args:
1326 if hasattr(temp_arg, "_detach"):
File C:\PySpark\Spark\spark-3.5.3-bin-hadoop3\python\pyspark\errors\exceptions\captured.py:179, in capture_sql_exception..deco(*a, **kw)
177 def deco(*a: Any, **kw: Any) -> Any:
178 try:
--> 179 return f(*a, **kw)
180 except Py4JJavaError as e:
181 converted = convert_exception(e.java_exception)
File C:\PySpark\Spark\spark-3.5.3-bin-hadoop3\python\lib\py4j-0.10.9.7-src.zip\py4j\protocol.py:326, in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
331 "An error occurred while calling {0}{1}{2}. Trace:\n{3}\n".
332 format(target_id, ".", name, value))
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 4 in stage 2.0 failed 1 times, most recent failure: Lost task 4.0 in stage 2.0 (TID 6) (3JMRMJ3 executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:203)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:174)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:67)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:367)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:331)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)
at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:166)
at org.apache.spark.scheduler.Task.run(Task.scala:141)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620)
at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64)
at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:190)
... 17 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2856)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2792)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2791)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2791)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1247)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1247)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1247)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:3060)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2994)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2983)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:989)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2393)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2414)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2433)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2458)
at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1049)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:410)
at org.apache.spark.rdd.RDD.collect(RDD.scala:1048)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:195)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.lang.Thread.run(Unknown Source)
Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:203)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:174)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:67)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:367)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:331)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)
at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:166)
at org.apache.spark.scheduler.Task.run(Task.scala:141)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620)
at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64)
at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
... 1 more
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:190)
... 17 more
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
Cell In[9], line 1
----> 1 input = rdd.map(lambda x : (x[0], x[1], x[2], x[3])).collect()
2 output = rdd.map(lambda x: (x[0], x[1], x[2], days_convert(x[3]))).collect()
3 print(" Input : ")
File C:\PySpark\Spark\spark-3.5.3-bin-hadoop3\python\pyspark\rdd.py:1833, in RDD.collect(self)
1831 with SCCallSiteSync(self.context):
1832 assert self.ctx._jvm is not None
-> 1833 sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
1834 return list(_load_from_socket(sock_info, self._jrdd_deserializer))
File C:\PySpark\Spark\spark-3.5.3-bin-hadoop3\python\lib\py4j-0.10.9.7-src.zip\py4j\java_gateway.py:1322, in JavaMember.__call__(self, *args)
1316 command = proto.CALL_COMMAND_NAME +\
1317 self.command_header +\
1318 args_command +\
1319 proto.END_COMMAND_PART
1321 answer = self.gateway_client.send_command(command)
-> 1322 return_value = get_return_value(
1323 answer, self.gateway_client, self.target_id, self.name)
1325 for temp_arg in temp_args:
1326 if hasattr(temp_arg, "_detach"):
File C:\PySpark\Spark\spark-3.5.3-bin-hadoop3\python\pyspark\errors\exceptions\captured.py:179, in capture_sql_exception..deco(*a, **kw)
...
at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:574)
at java.base/java.net.ServerSocket.accept(ServerSocket.java:532)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:190)
... 17 more
Output is truncated.
Я проверил установку. Все в порядке (версия Java 8, Spark 3.5, Python 3.12, WinUtils установлены, пользователь и переменная Windows созданы). В чем может быть проблема? Я получил эту ошибку только с функцией Python. Это связано с Python?
rdd.map(lambda x : x[0]).collect() [/code] Я использовал функции .map(), .take() в RDD. Это привело к этой ошибке. В чем может быть проблема? [code]Py4JJavaError Traceback (most recent call last) Cell In[7], line 1 ----> 1 rdd.map(lambda x : x[0]).collect()
File C:\PySpark\Spark\spark-3.5.3-bin-hadoop3\python\pyspark\rdd.py:1833, in RDD.collect(self) 1831 with SCCallSiteSync(self.context): 1832 assert self.ctx._jvm is not None -> 1833 sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd()) 1834 return list(_load_from_socket(sock_info, self._jrdd_deserializer))
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 4 in stage 2.0 failed 1 times, most recent failure: Lost task 4.0 in stage 2.0 (TID 6) (3JMRMJ3 executor driver): org.apache.spark.SparkException: Python worker failed to connect back. at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:203) at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109) at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124) at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:174) at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:67) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:367) at org.apache.spark.rdd.RDD.iterator(RDD.scala:331) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93) at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:166) at org.apache.spark.scheduler.Task.run(Task.scala:141) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620) at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64) at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623) at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source) at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source) at java.lang.Thread.run(Unknown Source) Caused by: java.net.SocketTimeoutException: Accept timed out at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method) at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source) at java.net.AbstractPlainSocketImpl.accept(Unknown Source) at java.net.PlainSocketImpl.accept(Unknown Source) at java.net.ServerSocket.implAccept(Unknown Source) at java.net.ServerSocket.accept(Unknown Source) at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:190) ... 17 more
Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2856) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2792) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2791) at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2791) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1247) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1247) at scala.Option.foreach(Option.scala:407) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1247) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:3060) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2994) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2983) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:989) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2393) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2414) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2433) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2458) at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1049) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:410) at org.apache.spark.rdd.RDD.collect(RDD.scala:1048) at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:195) at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source) at java.lang.reflect.Method.invoke(Unknown Source) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182) at py4j.ClientServerConnection.run(ClientServerConnection.java:106) at java.lang.Thread.run(Unknown Source) Caused by: org.apache.spark.SparkException: Python worker failed to connect back. at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:203) at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109) at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124) at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:174) at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:67) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:367) at org.apache.spark.rdd.RDD.iterator(RDD.scala:331) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93) at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:166) at org.apache.spark.scheduler.Task.run(Task.scala:141) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620) at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64) at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623) at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source) at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source) ... 1 more Caused by: java.net.SocketTimeoutException: Accept timed out at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method) at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source) at java.net.AbstractPlainSocketImpl.accept(Unknown Source) at java.net.PlainSocketImpl.accept(Unknown Source) at java.net.ServerSocket.implAccept(Unknown Source) at java.net.ServerSocket.accept(Unknown Source) at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:190) ... 17 more --------------------------------------------------------------------------- Py4JJavaError Traceback (most recent call last) Cell In[9], line 1 ----> 1 input = rdd.map(lambda x : (x[0], x[1], x[2], x[3])).collect() 2 output = rdd.map(lambda x: (x[0], x[1], x[2], days_convert(x[3]))).collect() 3 print(" Input : ")
File C:\PySpark\Spark\spark-3.5.3-bin-hadoop3\python\pyspark\rdd.py:1833, in RDD.collect(self) 1831 with SCCallSiteSync(self.context): 1832 assert self.ctx._jvm is not None -> 1833 sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd()) 1834 return list(_load_from_socket(sock_info, self._jrdd_deserializer))
File C:\PySpark\Spark\spark-3.5.3-bin-hadoop3\python\pyspark\errors\exceptions\captured.py:179, in capture_sql_exception..deco(*a, **kw) ... at java.base/java.net.ServerSocket.implAccept(ServerSocket.java:574) at java.base/java.net.ServerSocket.accept(ServerSocket.java:532) at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:190) ... 17 more Output is truncated. [/code] Я проверил установку. Все в порядке (версия Java 8, Spark 3.5, Python 3.12, WinUtils установлены, пользователь и переменная Windows созданы). В чем может быть проблема? Я получил эту ошибку только с функцией Python. Это связано с Python?
У меня есть следующий фрагмент кода
vertices = df1.select(F.explode(F.array('issuer_id_indexed', 'receiver_id_indexed'))) \
.distinct() \
.rdd.map(lambda row: row ) # Transform the exploded values into an RDD
Кто -нибудь знает, почему я получаю эту ошибку в ноутбуках Юпитера ??? Я пытался загрузить свою модель Tensorflow в Apache Spark Vis Sparlflowbut, я не могу понять, как преодолеть эту ошибку. Любая помощь будет очень оценена.from...
Кто -нибудь знает, почему я получаю эту ошибку в ноутбуках Юпитера ??? Я пытался загрузить свою модель Tensorflow в Apache Spark Vis Sparlflowbut, я не могу понять, как преодолеть эту ошибку. Любая помощь будет очень оценена.from...
Я пытаюсь запустить сеанс Spark в Jupyter Notebook на компьютере EC2 Linux с помощью кода Visual Studio. Мой код выглядит следующим образом:
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName( spark_app ).getOrCreate()...